- 1 A metric space X is said to be **complete** if every Cauchy sequence in X is convergent in X. For $1 \le p \le \infty$ and $n = 1, 2, \dots$, show that the metric space (\mathbb{K}^n, d_p) is complete where $d_p(x, y) = ||x - y||_p$. Give an example of a metric space which is not complete.
- 2 A metric space is said to be **separable** if it has countable dense subset. For $1 \le p \le \infty$ and $n = 1, 2, \cdots$, show that the metric space (\mathbb{K}^n, d_p) is separable.
- 3 For $x \in \mathbb{K}^n$, show that $||x||_{\infty} \le ||x||_2 \le ||x||_1$ and $||x||_1 \le \sqrt{n} ||x||_2 \le n ||x||_{\infty}$.