- 1. Let X_1 be a closed subspace and X_2 be a finite dimensional subspace of a normed space X. Show that the sum $X_1 + X_2 = \{x_1 + x_2 : x_1 \in X_1, x_2 \in X_2\}$ is closed in X. (Hint: Proof of the theorem: "Every finite dimensional subspace of a normed space is complete"). Show by a counterexample that the sum of two closed sets need not be closed.
- 2. Let X = C([a, b]). For $x \in X$, let $||x||_1 = \int_a^b |x(t)| dt$ and $||x||_{\infty} = \sup\{|x(t)| : t \in [a, b]\}$. Show that the norm $||.||_{\infty}$ is stronger than but not equivalent to the norm $||.||_1$.
- 3. Let $X = C^1([a, b])$, the linear space of all continuously differentiable functions on [a, b]. Denote the derivative of x by x'. For $x \in X$, let

$$||x|| = ||x||_{\infty} + ||x'||_{\infty}$$
 and $||x||_0 = |x(a)| + ||x'||_{\infty}$.

Show that $\|.\|$ and $\|.\|_0$ are equivalent norms on X by showing that $\|x\|_0 \le \|x\| \le (b-a+1)\|x\|_0$ for all $x \in X$.

5. Let X be the linear space of all polynomials in one variable with coefficients from \mathbb{K} . For $p \in X$ with $p(t) = a_0 + a_1 t + \cdots + a_n t^n$, let

$$||p|| = \sup\{|p(t)| : 0 \le t \le 1\},$$
$$||p||_1 = |a_0| + \dots + |a_n|,$$
$$||p||_{\infty} = \max\{|a_0|, \dots, |a_n|\}.$$

Show that $||p|| \leq ||p||_1$ and $||p||_{\infty} \leq ||p||_1$ for all $p \in X$. Also show that ||.|| and $||.||_1$ are not equivalent and ||.|| and $||.||_{\infty}$ are not comparable.

- 6. Show that the closed unit ball of ℓ^p ; $1 \leq p \leq \infty$ is not compact by producing a sequence in the ball having no convergent subsequence.
- 7. Let c_{00} denote the linear space of all K-valued sequences $x = (x(1), x(2), \cdots)$ with x(j) = 0 for all but finitely many j. For $x \in c_{00}$ and for $1 \le p \le \infty$, define the norm

$$||x||_p = \begin{cases} \left(\sum_{j=1}^{\infty} |x(j)|^p\right)^{1/p} & \text{if } 1 \le p < \infty\\ \sup_j |x(j)| & \text{if } p = \infty \end{cases}$$

Show that $(c_{00}, \|.\|_p)$ is a subspace of ℓ^p , but not closed in ℓ^p . Also show that for $1 \leq p < r \leq \infty$, the norm $\|.\|_p$ is stronger than but not equivalent to the norm $\|.\|_r$.