- 1. Let $1 \leq p < r \leq \infty$. Show that $\ell^p \subsetneq \ell^r$.
- 2. Let *E* be a measurable subset of \mathbb{R} with $m(E) < \infty$ and let $1 \le p < r \le \infty$. Show that $L^r(E) \subsetneq L^p(E)$. If $m(E) = \infty$, then show that neither $L^p(E) \subseteq L^r(E)$ nor $L^r(E) \subseteq L^p(E)$.
- 3. Show that ℓ^p is a complete metric space; $1 \leq p \leq \infty$.
- 4. Show that L^p is a complete metric space; $1 \le p \le \infty$.
- 5. Show that the metric space ℓ^p is separable for $1 \leq p < \infty$ while ℓ^{∞} is not.
- 5. Show that the metric space L^p is separable for $1 \le p < \infty$ while L^{∞} is not.